Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

نویسنده

  • Robert L. Burnap
چکیده

Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The "proteomic constraint" is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the ribosome groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of reduced exogenous organic compounds in the physiology of the blue-green bacteria (algae): photoheterotrophic growth of an "autotrophic" blue-green bacterium.

The unicellular blue-green bacterium Agmenellum quadruplicatum strain BG-1 was found to be capable of rapid photoheterotrophic growth but unable to grow in the dark on a variety of reduced organic substrates. The generation time on glycerol was 12 h, and on CO(2), 3 h. Glycerol carbon was converted into cellular carbon with a very high efficiency. This high efficiency of carbon conversion, the ...

متن کامل

Effect of growth conditions and extraction solvents on enhancement of antimicrobial activity of the microalgae Chlorella vulgaris

Regarding increasing rate of drug resistance among microbial pathogens, a global search to find new antimicrobial agents from natural compounds with fewer side effects has been considered by many researchers worldwide. Bioactive compounds with good antimicrobial activity have been isolated from different algae and cyanobacteria. The current study was performed to determine antimicrobial potenti...

متن کامل

Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy

The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon di...

متن کامل

Toward systems metabolic engineering in cyanobacteria

We recently assessed the metabolism of Synechocystis sp PCC6803 through a constraints-based reconstruction and analysis approach and identified its main metabolic properties. These include reduced metabolic robustness, in contrast to a high photosynthetic robustness driving the optimal autotrophic metabolism. Here, we address how these metabolic features affect biotechnological capabilities of ...

متن کامل

Cytotoxic activityof cyanobacteria from Geno hot spring on HeLa human cell line

The present study aimed to determine the cellular toxicity and anticancer characteristics of six species of Cyan bacteria living in Geno hot spring on cervical cancer cell lines. For this purpose, the cyto toxicity of methanol extracts from Geno hot spring Cyanobacteria including Leptolyngbya tenuis, Chroococcus minutes, Gloeocapsarupestris, Oscillatoria articulate, Chroococcus namiculata and S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015